3 years ago

Dynamics of gap flow interference in a vibrating side-by-side arrangement of two circular cylinders at moderate Reynolds number.

R.K. Jaiman, B. Liu

In this work, the coupled dynamics of the gap flow and the vortex-induced vibration (VIV) on a side-by-side (SBS) arrangement of two circular cylinders is numerically investigated at moderate Reynolds number 100 < Re < 800. Of particular interest is to establish a relationship between the VIV, the gap flow and the near-wake instability behind bluff bodies. We find that the kinematics of the VIV regulates the streamwise vorticity concentration, which accompanies with a recovery of two-dimensional hydrodynamic responses at the peak lock-in stage. On the other hand, the near-wake instability may develop around an in-determinant two-dimensional streamline saddle point along the interfaces of a pair of imbalanced counter-signed vorticity clusters. The vorticity concentration difference of adjacent vorticity clusters and the fluid momentum are closely interlinked with the prominence of streamwise vortical structures. In both SSBS and VSBS arrangements, the flip-flopping frequency is significantly low for the three-dimensional flow, except at the VIV lock-in stage for the VSBS arrangement. A quasi-stable deflected gap flow regime with negligible spanwise hydrodynamic (i.e., two-dimensional) response is found at the peak lock-in stage of VSBS arrangements. Owing to the gap-flow proximity interference, a high streamwise vorticity concentration is observed in its narrow near-wake region. The increase of the gap-flow proximity interference tends to stabilize the VIV lock-in, which eventually amplifies the spanwise correlation length and weakens the streamwise vortical structures. We employ the dynamic mode decomposition procedure to characterize the space-time evolution of the primary vortex wake.

Publisher URL: http://arxiv.org/abs/1801.05109

DOI: arXiv:1801.05109v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.