3 years ago

Reactive Fe-Sites in Ni/Fe (Oxy)hydroxide Are Responsible for Exceptional Oxygen Electrocatalysis Activity

Reactive Fe-Sites in Ni/Fe (Oxy)hydroxide Are Responsible for Exceptional Oxygen Electrocatalysis Activity
Jiang Deng, Michaela Burke Stevens, Shannon W. Boettcher, Christina D. M. Trang, Lisa J. Enman
Fe is a critical component of record-activity Ni/Fe (oxy)hydroxide (Ni(Fe)OxHy) oxygen evolution reaction (OER) catalysts, yet its precise role remains unclear. We report evidence for different types of Fe species within Ni(Fe)OxHy— those that are rapidly incorporated into the Ni oxyhydroxide from Fe cations in solution (and that are likely at edges or defects) and are responsible for the enhanced OER activity, and those substituting for bulk Ni that modulate the observed Ni voltammetry. These results suggest that the exceptional OER activity of Ni(Fe)OxHy does not depend on Fe in the bulk or on average electrochemical properties of the Ni cations measured by voltammetry, and instead emphasize the role of the local structure.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b07117

DOI: 10.1021/jacs.7b07117

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.