5 years ago

Photoelectrochemical Behavior of a Molecular Ru-Based Water-Oxidation Catalyst Bound to TiO2-Protected Si Photoanodes

Photoelectrochemical Behavior of a Molecular Ru-Based Water-Oxidation Catalyst Bound to TiO2-Protected Si Photoanodes
Antoni Llobet, Nathan S. Lewis, Xavier Sala, Bruce S. Brunschwig, Harry B. Gray, Ivan A. Moreno-Hernandez, Roc Matheu
A hybrid photoanode based on a molecular water oxidation precatalyst was prepared from TiO2-protected n- or p+-Si coated with multiwalled carbon nanotubes (CNT) and the ruthenium-based water oxidation precatalyst [RuIV(tda)(py-pyr)2(O)], 1(O) (tda2– is [2,2′:6′,2″-terpyridine]-6,6″-dicarboxylato and py-pir is 4-(pyren-1-yl)-N-(pyridin-4-ylmethyl)butanamide). The Ru complex was immobilized by π–π stacking onto CNTs that had been deposited by drop casting onto Si electrodes coated with 60 nm of amorphous TiO2 and 20 nm of a layer of sputtered C. At pH = 7 with 3 Sun illumination, the n-Si/TiO2/C/CNT/[1+1(O)] electrodes exhibited current densities of 1 mA cm–2 at 1.07 V vs NHE. The current density was maintained for >200 min at a constant potential while intermittently collecting voltammograms that indicated that over half of the Ru was still in molecular form after O2 evolution.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b06800

DOI: 10.1021/jacs.7b06800

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.