3 years ago

The root transcriptome of Achyranthes bidentata and the identification of the genes involved in the replanting benefit

Yan Jie Yi, Rui Fang Li, Ming Jie Li, Cheng Dong, Zhong Yi Zhang, Yan Hui Yang

Abstract

Key message

The transcriptome profiling in replanting roots revealed that expression pattern changes of key genes promoted important metabolism pathways, antioxidant and pathogen defense systems, adjusted phytohormone signaling and inhibited lignin biosynthesis.

Abstract

The yield of the medicinal plant Achyranthes bidentata could be significantly increased when replanted into a field cultivated previously for the same crop, but the biological basis of this so-called “replanting benefit” is unknown. Here, the RNA-seq technique was used to identify candidate genes responsible for the benefit. The analysis of RNA-seq libraries prepared from mRNA extracted from the roots of first year planting (normal growth, NG) and second year replanting (consecutive monoculture, CM) yielded about 40.22 GB sequencing data. After de novo assembly, 87,256 unigenes were generated with an average length of 1060 bp. Among these unigenes, 55,604 were annotated with public databases, and 52,346 encoding sequences and 2881 transcription factors were identified. A contrast between the NG and CM libraries resulted in a set of 3899 differentially transcribed genes (DTGs). The DTGs related to the replanting benefit and their expression profiles were further analyzed by bioinformatics and qRT-PCR approaches. The major differences between the NG and CM transcriptomes included genes encoding products involved in glycolysis/gluconeogenesis, glutathione metabolism and antioxidant defense, in aspects of the plant/pathogen interaction, phytohormone signaling and phenylpropanoid biosynthesis. The indication was that replanting material enjoyed a stronger level of defense systems, a balance regulation of hormone signals and a suppression of lignin formation, thereby promoting root growth and development. The study provides considerable significant insights for a better understanding of the molecular mechanism of the replanting benefit and suggests their possible application in developing methods to reinforce the effects in medicinal plants.

Publisher URL: https://link.springer.com/article/10.1007/s00299-018-2255-z

DOI: 10.1007/s00299-018-2255-z

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.