3 years ago

Infection dynamics of insecticide-degrading symbionts from soil to insects in response to insecticide spraying

Infection dynamics of insecticide-degrading symbionts from soil to insects in response to insecticide spraying
Yuya Sato, Tomoyuki Hori, Yoshitomo Kikuchi, Hideomi Itoh, Masahito Hayatsu, Kanako Tago, Atsushi Nagayama
Insecticide resistance is a serious concern in modern agriculture, and an understanding of the underlying evolutionary processes is pivotal to prevent the problem. The bean bug Riptortus pedestris, a notorious pest of leguminous crops, acquires a specific Burkholderia symbiont from the environment every generation, and harbors the symbiont in the midgut crypts. The symbiont’s natural role is to promote insect development but the insect host can also obtain resistance against the insecticide fenitrothion (MEP) by acquiring MEP-degrading Burkholderia from the environment. To understand the developing process of the symbiont-mediated MEP resistance in response to the application of the insecticide, we investigated here in parallel the soil bacterial dynamics and the infected gut symbionts under different MEP-spraying conditions by culture-dependent and culture-independent analyses, in conjunction with stinkbug rearing experiments. We demonstrate that MEP application did not affect the total bacterial soil population but significantly decreased its diversity while it dramatically increased the proportion of MEP-degrading bacteria, mostly Burkholderia. Moreover, we found that the infection of stinkbug hosts with MEP-degrading Burkholderia is highly specific and efficient, and is established after only a few times of insecticide spraying at least in a field soil with spraying history, suggesting that insecticide resistance could evolve in a pest bug population more quickly than was thought before.

Publisher URL: https://www.nature.com/articles/s41396-017-0021-9

DOI: 10.1038/s41396-017-0021-9

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.