3 years ago

Comparison of the Performance of van der Waals Dispersion Functionals in the Description of Water and Ethanol on Transition Metal Surfaces

Comparison of the Performance of van der Waals Dispersion
Functionals in the Description of Water and Ethanol on Transition
Metal Surfaces
Rafael L. H. Freire, Juarez L. F. Da Silva, Adam Kiejna, Diego Guedes-Sobrinho
Pairwise van der Waals (vdW) corrections have been routinely added to density functional theory (DFT) adsorption studies of inorganic or organic molecules on solid surfaces, however, comparative studies of the available pairwise corrections, e.g., D2, D3, D3(BJ), TS, and TS+SCS, are quite scarce. We report DFT calculations within the Perdew–Burke–Ernzerhof (PBE) functional to assess the performance of the mentioned pairwise vdW corrections for well-defined transition-metal (TM) systems, namely, the Cu, Pt, and Au bulks in the face-centered cubic structure, close-packed TM substrates (Cu(111), Pt(111), Au(111), Cu9/Pt9/Cu(111), Pt9/Cu9/Cu(111), Au9/Pt9/Au(111), Pt9/Au9/Au(111)), and the adsorption of water and ethanol on the selected substrates, which include strained Pt-monolayers, i.e., a good challenge for pairwise vdW corrections. In general, accounting for vdW interactions leads to smaller lattice constants, which is expected due to the attractive nature of the vdW corrections, and the D3, D3(BJ), and TS+SCS improves the DFT-PBE results, in contrast with D2 and TS. Compared with PBE results, the vdW corrections enhance the contraction of the topmost surface layers, which contributes to change the electronic structure, in particular, the d-band center shifts away from the Fermi energy (up to 0.3 eV) in most cases, while the work function changes by about 0.2 eV in the worst cases. As expected, the attractive nature of the vdW corrections helps to enhance adsorption energies by 3–4 times compared with DFT-PBE. However, the adsorption energy trends versus the d-band center are preserved for all vdW corrections, except for the DFT-D2 framework, which deviates substantially from the studied vdW corrections. Therefore, based on our results and analyses, we can conclude that the D3, D3(BJ), and TS+SCS corrections yield the best description for the selected systems.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b09749

DOI: 10.1021/acs.jpcc.7b09749

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.