3 years ago

FePt-Cys nanoparticles induce ROS-dependent cell toxicity, and enhance chemo-radiation sensitivity of NSCLC cells in vivo and in vitro

FePt-Cys nanoparticles induce ROS-dependent cell toxicity, and enhance chemo-radiation sensitivity of NSCLC cells in vivo and in vitro
FePt-Cys nanoparticles (FePt-Cys NPs) have been well used in many fields, despite their poor solubility and stability. We synthetized a cysteine surface modified FePt NPs, which exhibited good solubility, stability and biocompatibility. We explored the insight mechanisms of the antitumor effects of this new nanoparticle system in lung cancer cells. In the in vitro study, FePt-Cys NPs induced a reactive oxygen species (ROS) burst, which suppressed the antioxidant protein expression and induced cell apoptosis. Furthermore, FePt-Cys NPs prevented the migration and invasion of H1975 and A549 cells. These changes were correlated with a dramatic decrease in MMP-2/9 expression and enhanced the cellular attachment. We demonstrated that FePt-Cys NPs promoted the effects of chemo-radiation through activation of the caspase system and impairment of DNA damage repair. In the in vivo study, no severe allergies or drug-related deaths were observed and FePt-Cys NPs showed a synergistic effect with cisplatin and radiation. In conclusion, with good safety and efficacy, FePt-Cys NPs could therefore be potential sensitizers for chemoradiotherapy.

Publisher URL: www.sciencedirect.com/science

DOI: S0304383518300466

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.