3 years ago

Rapid Evolution of the Gaseous Exoplanetary Debris Around the White Dwarf Star HE 1349--2305.

J. T. Fuchs, E. Dennihy, S. M. Fanale, J. C. Clemens, B. H. Dunlap, J. J. Hermes

Observations of heavy metal pollution in white dwarf stars indicate that metal-rich planetesimals are frequently scattered into star-grazing orbits, tidally disrupted, and accreted onto the white dwarf surface, offering direct insight into the dynamical evolution of post-main-sequence exoplanetary systems. Emission lines from the gaseous debris in the accretion disks of some of these systems show variations on timescales of decades, and have been interpreted as the general relativistic precession of recently formed, elliptical disk. Here we present a comprehensive spectroscopic monitoring campaign of the calcium infrared triplet emission in one system, HE 1349--2305, which shows morphological emission profile variations suggestive of a precessing, asymmetric intensity pattern. The emission profiles are shown to vary on a timescale of one to two years, which is an order of magnitude shorter than what has been observed in other similar systems. We demonstrate that this timescale is likely incompatible with general relativistic precession, and consider alternative explanations for the rapid evolution including the propagation of density waves within the gaseous debris. We conclude with recommendations for follow-up observations, and discuss how the rapid evolution of the gaseous debris in HE 1349--2305 could be leveraged to test theories of exoplanetary debris disk evolution around white dwarf stars.

Publisher URL: http://arxiv.org/abs/1801.05443

DOI: arXiv:1801.05443v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.