3 years ago

Spin-Orbit Coupling and Topological States in $F=\frac{3}{2}$ Cold Fermi Gas.

Masatoshi Sato, Yshai Avishai, Igor Kuzmenko, Tetyana Kuzmenko

In this work we study the possible occurrence of topological insulators for 2D fermions of high spin. They can be realized in cold fermion systems with ground-state atomic spin $F>\tfrac{1}{2}$, if the optical potential is properly designed, and spin-orbit coupling is relevant. The latter is shown to be induced by letting the fermions interact with a specially tuned arrangement of polarized laser beams. When the system is subject to a perpendicular magnetic field, time reversal symmetry is broken but the ensuing Hamiltonian is still endowed with a mirror symmetry.

Topological insulators for fermions of higher spins are fundamentally distinct from those pertaining to spin $\frac{1}{2}$. The underlying physics reveals a plethora of positive and negative mirror Chern numbers, respectively corresponding to chiral and anti-chiral edge states. Here, for simplicity, we concentrate on the case $F=\tfrac{3}{2}$ (which is suitable for $^{6}$Li or $^2$H atoms) but extension to higher spins (such as $^{40}$K whose ground-state spin is $F=\tfrac{9}{2}$), is straightforward.

Publisher URL: http://arxiv.org/abs/1801.05646

DOI: arXiv:1801.05646v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.