3 years ago

A distribution approach to finite-size corrections in Bethe Ansatz solvable models.

Etienne Granet, Hubert Saleur, Jesper Lykke Jacobsen

We present a new and efficient method for deriving finite-size effects in statistical physics models solvable by Bethe Ansatz. It is based on the study of the functional that maps a function to the sum of its evaluations over the Bethe roots. A simple and powerful constraint is derived when applying this functional to infinitely derivable test functions with compact support, that generalizes then to more general test functions. The method is presented in the context of the simple spin-$1/2$ XXZ chain for which we derive the finite-size corrections to leading eigenvalues of the Hamiltonian for any configuration of Bethe numbers with real Bethe roots. The expected results for the central charge and conformal dimensions are recovered.

Publisher URL: http://arxiv.org/abs/1801.05676

DOI: arXiv:1801.05676v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.