5 years ago

Evolution of Excited-State Dynamics in Periodic Au28, Au36, Au44, and Au52 Nanoclusters

Evolution of Excited-State Dynamics in Periodic Au28, Au36, Au44, and Au52 Nanoclusters
Rongchao Jin, Matthew Y. Sfeir, Katsuyuki Nobusada, Mircea Cotlet, Chenjie Zeng, Kenji Iida, Meng Zhou
Understanding the correlation between the atomic structure and optical properties of gold nanoclusters is essential for exploration of their functionalities and applications involving light harvesting and electron transfer. We report the femto-nanosecond excited state dynamics of a periodic series of face-centered cubic (FCC) gold nanoclusters (including Au28, Au36, Au44, and Au52), which exhibit a set of unique features compared with other similar sized clusters. Molecular-like ultrafast Sn → S1 internal conversions (i.e., radiationless electronic transitions) are observed in the relaxation dynamics of FCC periodic series. Excited-state dynamics with near-HOMO–LUMO gap excitation lacks ultrafast decay component, and only the structural relaxation dominates in the dynamical process, which proves the absence of core–shell relaxation. Interestingly, both the relaxation of the hot carriers and the band-edge carrier recombination become slower as the size increases. The evolution in excited-state properties of this FCC series offers new insight into the structure-dependent properties of metal nanoclusters, which will benefit their optical energy harvesting and photocatalytic applications.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01597

DOI: 10.1021/acs.jpclett.7b01597

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.