3 years ago

MeV Dark Matter Complementarity and the Dark Photon Portal.

Manfred Lindner, Maíra Dutra, Farinaldo S. Queiroz, Clarissa Siqueira, Stefano Profumo, Werner Rodejohann

We discuss the phenomenology of an MeV-scale Dirac fermion coupled to the Standard Model through a dark photon with kinetic mixing with the electromagnetic field. We compute the dark matter relic density and explore the interplay of direct detection and accelerator searches for dark photons. We show that precise measurements of the temperature and polarization power spectra of the Cosmic Microwave Background Radiation lead to stringent constraints, leaving a small window for the thermal production of this MeV dark matter candidate. The forthcoming MeV gamma-ray telescope e-ASTROGAM will offer important and complementary opportunities to discover dark matter particles with masses below 10 MeV. Lastly, we discuss how a late-time inflation episode and freeze-in production could conspire to yield the correct relic density while being consistent with existing and future constraints.

Publisher URL: http://arxiv.org/abs/1801.05447

DOI: arXiv:1801.05447v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.