3 years ago

Eliminating the effect of rating bias on reputation systems.

Leilei Wu, Xiao-Long Ren, Zhuoming Ren, Jianlin Zhang, Linyuan Lü

The ongoing rapid development of the e-commercial and interest-base websites make it more pressing to evaluate objects' accurate quality before recommendation by employing an effective reputation system. The objects' quality are often calculated based on their historical information, such as selected records or rating scores, to help visitors to make decisions before watching, reading or buying. Usually high quality products obtain a higher average ratings than low quality products regardless of rating biases or errors. However many empirical cases demonstrate that consumers may be misled by rating scores added by unreliable users or deliberate tampering. In this case, users' reputation, i.e., the ability to rating trustily and precisely, make a big difference during the evaluating process. Thus, one of the main challenges in designing reputation systems is eliminating the effects of users' rating bias on the evaluation results. To give an objective evaluation of each user's reputation and uncover an object's intrinsic quality, we propose an iterative balance (IB) method to correct users' rating biases. Experiments on two online video-provided Web sites, namely MovieLens and Netflix datasets, show that the IB method is a highly self-consistent and robust algorithm and it can accurately quantify movies' actual quality and users' stability of rating. Compared with existing methods, the IB method has higher ability to find the "dark horses", i.e., not so popular yet good movies, in the Academy Awards.

Publisher URL: http://arxiv.org/abs/1801.05734

DOI: arXiv:1801.05734v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.