5 years ago

Reactive Intermediates or Inert Graphene? Temperature- and Pressure-Determined Evolution of Carbon in the CH4–Ni(111) System

Reactive Intermediates or Inert Graphene? Temperature- and Pressure-Determined Evolution of Carbon in the CH4–Ni(111) System
Jia Lin Zhang, Jian-Qiang Zhong, Kaidi Yuan, Yinjuan Ren, Shuo Sun, Wei Chen
Atomic-level identification of carbon intermediates under reaction conditions is essential for carbon-related heterogeneous catalysis. Using the in operando technique of near-ambient-pressure X-ray photoelectron spectroscopy, we have identified various carbon intermediates during the thermal decomposition of CH4 on Ni(111), including *CH, *C1/Ni3C, *Cn (n ≥ 2), and clock-reconstructed Ni2C at different temperature regions (300–900 K). These “reactive” carbon precursors can either react with probing molecules such as O2 at room temperature or be etched away by CH4. They can also develop into graphene flakes under controlled conditions: a temperature between 800 and 900 K and a suitable CH4 pressure (10–3–10–1 mbar, depending on temperature). The growth rate of graphene is significantly restrained at higher CH4 pressures, due to the accelerated etching of its carbon precursors. The identification of in operando carbon intermediates and the control of their evolution have great potential in designing heterogeneous catalysts for the direct conversion of methane. The observed carbon aggregation/etching equilibrium reveals an underlying mechanism in coking prevention and in the fabrication of large-area single-crystal graphene, where the suppression of seeding density and etching up of small grains are required.

Publisher URL: http://dx.doi.org/10.1021/acscatal.7b01880

DOI: 10.1021/acscatal.7b01880

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.