3 years ago

Asymmetry between sister cells of pluripotent stem cells at the onset of differentiation.

Yuki Kondo, Bayar Hexig, Olga Maria De Sousa, Masahiro Iwahashi, Jingyue Li, Ayumu Kano, Atsushi Maruyama, Shogo Nakamura, Kiyoshi Ohnuma, Yohei Hayashi, Toshihiro Akaike
Various somatic stem cells divide asymmetrically; however, it is not known whether embryonic stem cells (ESCs) divide symmetrically or asymmetrically, not only while maintaining an undifferentiated state, but also at the onset of differentiation. Here, we observed single ESCs using time-lapse imaging, and compared sister cell pairs derived from the same mother cell in either the maintenance or differentiation medium. Mouse ESCs were cultured on E-cadherin-coated glass-based dishes, which allowed us to trace single cells. The undifferentiated cell state was detected by green fluorescence protein (GFP) expression driven by the Nanog promoter, which is active only in undifferentiated cells. Cell population analysis using flow cytometry showed that the peak width indicating distribution of GFP expression broadened when cells were transferred to the differentiation medium compared to when they were in the maintenance medium. This finding suggested that the population of ESCs became more heterogeneous at the onset of differentiation. Using single-cell analysis by time-lapse imaging, we found that although the total survival ratio decreased by changing to differentiation medium, the one-live-one-dead ratio of sister cell pairs was smaller than that of randomly chosen non-sister cell pairs, defined as an unsynchronized cell pair control, in both media. This result suggested that sister cell pairs were more positively synchronized with each other compared to non-sister cell pairs. The differences in inter-division time (the time interval between mother cell division and the subsequent cell division) between sister cells was smaller than that between non-sister cell pairs in both media, suggesting that sister cells divided synchronously. Although the difference in Nanog-GFP intensity between sister cells was smaller than that between non-sister cells in the maintenance medium, it was the same in differentiation medium, suggesting asymmetrical Nanog-GFP intensity. These data suggested that ESCs may divide asymmetrically at the onset of differentiation resulting in heterogeneity.

Publisher URL: http://doi.org/10.1089/scd.2017.0113

DOI: 10.1089/scd.2017.0113

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.