3 years ago

Spectroscopic Investigation of Opal Formation from Suspensions

Spectroscopic Investigation of Opal Formation from Suspensions
M. Muldarisnur, F. Marlow
We report an in-situ observation of wet opal formation from a dilute colloidal suspension by using time-resolved transmission spectroscopy. The formation involves rather complex partial processes that include particle migration, particle ordering (crystallization) into differently oriented domains, and continuous compaction. The initial particle ordering results in an fcc lattice with an interparticle distance larger than particle diameter. The crystallization is followed by a slow but continuous compaction until the wet opal fills the capillary cell completely. The time behavior of the background of the extinction spectra indicates that there is no disordered dense state preceding the opal growth front. Instead, it seems that the continuous compaction process heals pointlike defects but at the same time induces domain-related defects. Similar formation processes likely occur for other deposition methods like vertical and horizontal deposition methods as well.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b05590

DOI: 10.1021/acs.jpcc.7b05590

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.