3 years ago

Exploiting Diversity in Molecular Timing Channels via Order Statistics.

Yonathan Murin, Nariman Farsad, Andrea Goldsmith, Mainak Chowdhury

We study diversity in one-shot communication over molecular timing channels. We consider a channel model where the transmitter simultaneously releases a large number of information particles, while the information is encoded in the time of release. The receiver decodes the information based on the random time of arrival of the information particles. The random propagation is characterized by the general class of right-sided unimodal densities. We characterize the asymptotic exponential decrease rate of the probability of error as a function of the number of released particles, and denote this quantity as the system diversity gain. Four types of detectors are considered: the maximum-likelihood (ML) detector, a linear detector, a detector that is based on the first arrival (FA) among all the transmitted particles, and a detector based on the last arrival (LA). When the density characterizing the random propagation is supported over a large interval, we show that the simple FA detector achieves a diversity gain very close to that of the ML detector. On the other hand, when the density characterizing the random propagation is supported over a small interval, we show that the simple LA detector achieves a diversity gain very close to that of the ML detector.

Publisher URL: http://arxiv.org/abs/1801.05567

DOI: arXiv:1801.05567v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.