3 years ago

Geographic Space as a Living Structure for Predicting Human Activities Using Big Data.

Zheng Ren, Bin Jiang

Inspired by Christopher Alexanders conception of the world - space is not lifeless or neutral but a living structure involving far more small things than large ones a topological representation has been previously developed to characterize the living structure or the wholeness of geographic space. This paper further develops the topological representation and living structure for predicting human activities in geographic space. Based on millions of street nodes of the United Kingdom extracted from OpenStreetMap, we established living structures at different levels of scale in a nested manner. We found that tweet locations at different levels of scale, such as country and city, can be well predicted by the underlying living structure. The high predictability demonstrates that the living structure and the topological representation are efficient and effective for better understanding geographic forms. Based on this major finding, we argue that the topological representation is a truly multi-scale representation, and point out that existing geographic representations are essentially single scale, so they bear many scale problems such as modifiable areal unit problem, the conundrum of length, and the ecological fallacy. We further discuss on why the living structure is an efficient and effective instrument for structuring geospatial big data, and why Alexanders organic worldview constitutes the third view of space.

Keywords: Organic worldview, topological representation, tweet locations, natural cities, scaling of geographic space

Publisher URL: http://arxiv.org/abs/1701.04005

DOI: arXiv:1701.04005v4

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.