3 years ago

Graph Embedding with Rich Information through Heterogeneous Network.

Guolei Sun, Xiangliang Zhang

Graph embedding has attracted increasing attention due to its critical application in social network analysis. Most existing algorithms for graph embedding only rely on the typology information and fail to use the copious information in nodes as well as edges. As a result, their performance for many tasks may not be satisfactory. In this paper, we proposed a novel and general framework of representation learning for graph with rich text information through constructing a bipartite heterogeneous network. Specially, we designed a biased random walk to explore the constructed heterogeneous network with the notion of flexible neighborhood. The efficacy of our method is demonstrated by extensive comparison experiments with several baselines on various datasets. It improves the Micro-F1 and Macro-F1 of node classification by 10% and 7% on Cora dataset.

Publisher URL: http://arxiv.org/abs/1710.06879

DOI: arXiv:1710.06879v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.