3 years ago

Beyond Magic Numbers: Atomic Scale Equilibrium Nanoparticle Shapes for Any Size

Beyond Magic Numbers: Atomic Scale Equilibrium Nanoparticle Shapes for Any Size
Paul Erhart, J. Magnus Rahm
In the pursuit of complete control over morphology in nanoparticle synthesis, knowledge of the thermodynamic equilibrium shapes is a key ingredient. While approaches exist to determine the equilibrium shape in the large size limit (≳10–20 nm) as well as for very small particles (≲2 nm), the experimentally increasingly important intermediate size regime has largely remained elusive. Here, we present an algorithm, based on atomistic simulations in a constrained thermodynamic ensemble, that efficiently predicts equilibrium shapes for any number of atoms in the range from a few tens to many thousands of atoms. We apply the algorithm to Cu, Ag, Au, and Pd particles with diameters between approximately 1 and 7 nm and reveal an energy landscape that is more intricate than previously suggested. The thus obtained particle type distributions demonstrate that the transition from icosahedral particles to decahedral and further into truncated octahedral particles occurs only very gradually, which has implications for the interpretation of experimental data. The approach presented here is extensible to alloys and can in principle also be adapted to represent different chemical environments.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b02761

DOI: 10.1021/acs.nanolett.7b02761

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.