5 years ago

Combined In Situ XAFS/DRIFTS Studies of the Evolution of Nanoparticle Structures from Molecular Precursors

Combined In Situ XAFS/DRIFTS Studies of the Evolution of Nanoparticle Structures from Molecular Precursors
Alexandre Goguet, Richard A. Catlow, Agnes Raj, Christopher Hardacre, Tugce Eralp Erden, Ellie K. Dann, Emma K. Gibson, Diego Gianolio, Peter P. Wells, Anna Kroner, Paul Collier
The rational design of catalyst materials is of great industrial significance, yet there is a fundamental lack of knowledge in some of the most well-established processes, e.g. formation of supported nanoparticle structures through impregnation. Here, the choice of precursor has a significant influence on the resulting catalytic properties of the end material, yet the chemistry that governs the transformation from defined molecular systems to dispersed nanoparticles is often overlooked. A spectroscopic method for advanced in situ characterization is employed to capture the formation of PdO nanoparticles supported on γ-Al2O3 from two alternative molecular precursors - Pd(NO3)2 and Pd(NH3)4(OH)2. Time-resolved diffuse reflectance infrared Fourier transform spectroscopy is able to identify the temperature assisted pathway for ligand decomposition, showing that NH3 ligands are oxidized to N2O and NO species, whereas NO3 ligands assist in joining Pd centers via bidentate bridging coordination. Combining with simultaneous X-ray absorption fine structure spectroscopy, the resulting nucleation and growth mechanisms of the precious metal oxide nanoparticles are resolved. The bridging ability of palladium nitrate aids formation and growth of larger PdO nanoparticles at lower onset temperature (<250 °C). Conversely, impregnation from [Pd(NH3)4]2+ results in well-isolated Pd centers anchored to the support which requires a higher temperature (>360 °C) for migration to form observable Pd–Pd distances of PdO nanoparticles. These smaller nanoparticles have improved dispersion and an increased number of step and edge sites compared to those formed from the conventional Pd(NO3)2 salt, favoring a lower light off temperature for complete methane oxidation.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b02552

DOI: 10.1021/acs.chemmater.7b02552

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.