3 years ago

Impact of Homologous Recombination on Silent Chromatin in Saccharomyces cerevisiae.

Jasper Rine, Kathryn J Sieverman
Specialized chromatin domains repress transcription of genes within them and present a barrier to many DNA-protein interactions. Silent chromatin in the budding yeast Saccharomyces cerevisiae, akin to heterochromatin of metazoans and plants, inhibits transcription of PolII- and PolIII-transcribed genes, yet somehow grants access to proteins necessary for DNA transactions like replication and homologous recombination. In this study, we adapted a novel assay to detect even transient changes in the dynamics of transcriptional silencing at HML after it served as a template for homologous recombination. Homologous recombination specifically targeted to HML via double-strand break formation at a homologous locus often led to transient loss of transcriptional silencing at HML Interestingly, many cells could template homology-directed repair at HML without an obligate loss of silencing, even in recombination events with extensive gene conversion tracts. In a population of cells that experienced silencing loss following recombination, transcription persisted for two to three hours after all double-strand breaks were repaired. mRNA levels from cells that experienced recombination-induced silencing loss did not approach the amount of mRNA seen in cells lacking transcriptional silencing. Thus, silencing loss at HML after homologous recombination was short-lived and limited.

Publisher URL: http://doi.org/10.1534/genetics.118.300704

DOI: 10.1534/genetics.118.300704

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.