3 years ago

Comparisons among several methods for handling missing data in principal component analysis (PCA)

Sébastien Loisel, Yoshio Takane


Missing data are prevalent in many data analytic situations. Those in which principal component analysis (PCA) is applied are no exceptions. The performance of five methods for handling missing data in PCA is investigated, the missing data passive method, the weighted low rank approximation (WLRA) method, the regularized PCA (RPCA) method, the trimmed scores regression method, and the data augmentation (DA) method. Three complete data sets of varying sizes were selected, in which missing data were created randomly and non-randomly. These data were then analyzed by the five methods, and their parameter recovery capability, as measured by the mean congruence coefficient between loadings obtained from full and missing data, is compared as functions of the number of extracted components (dimensionality) and the proportion of missing data (censor rate). For randomly censored data, all five methods worked well when the dimensionality and censor rate were small. Their performance deteriorated, as the dimensionality and censor rate increased, but the speed of deterioration was distinctly faster with the WLRA method. The RPCA method worked best and the DA method came as a close second in terms of parameter recovery. However, the latter, as implemented here, was found to be extremely time-consuming. For non-randomly censored data, the recovery was also affected by the degree of non-randomness in censoring processes. Again the RPCA method worked best, maintaining good to excellent recoveries when the censor rate was small and the dimensionality of solutions was not too excessive.

Publisher URL: https://link.springer.com/article/10.1007/s11634-018-0310-9

DOI: 10.1007/s11634-018-0310-9

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.