3 years ago

Digitization of multistep organic synthesis in reactionware for on-demand pharmaceuticals

Sergey S. Zalesskiy, Ralph C. Sigerson, Philip J. Kitson, Leroy Cronin, Jennifer S. Mathieson, Jean-Patrick Francoia, Guillaume Marie

Chemical manufacturing is often done at large facilities that require a sizable capital investment and then produce key compounds for a finite period. We present an approach to the manufacturing of fine chemicals and pharmaceuticals in a self-contained plastic reactionware device. The device was designed and constructed by using a chemical to computer-automated design (ChemCAD) approach that enables the translation of traditional bench-scale synthesis into a platform-independent digital code. This in turn guides production of a three-dimensional printed device that encloses the entire synthetic route internally via simple operations. We demonstrate the approach for the -aminobutyric acid receptor agonist, (±)-baclofen, establishing a concept that paves the way for the local manufacture of drugs outside of specialist facilities.

Publisher URL: http://science.sciencemag.org/cgi/content/short/359/6373/314

DOI: 10.1126/science.aao3466

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.