5 years ago

Ultrafast Dynamics in Light-Driven Molecular Rotary Motors Probed by Femtosecond Stimulated Raman Spectroscopy

Ultrafast Dynamics in Light-Driven Molecular Rotary Motors Probed by Femtosecond Stimulated Raman Spectroscopy
Ben L. Feringa, Stephen R. Meech, Christopher R. Hall, Ismael A. Heisler, Garth Jones, James Frost, Jamie Conyard, Wesley R. Browne
Photochemical isomerization in sterically crowded chiral alkenes is the driving force for molecular rotary motors in nanoscale machines. Here the excited-state dynamics and structural evolution of the prototypical light-driven rotary motor are followed on the ultrafast time scale by femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption (TA). TA reveals a sub-100-fs blue shift and decay of the Franck–Condon bright state arising from relaxation along the reactive potential energy surface. The decay is accompanied by coherently excited vibrational dynamics which survive the excited-state structural evolution. The ultrafast Franck–Condon bright state relaxes to a dark excited state, which FSRS reveals to have a rich spectrum compared to the electronic ground state, with the most intense Raman-active modes shifted to significantly lower wavenumber. This is discussed in terms of a reduced bond order of the central bridging bond and overall weakening of bonds in the dark state, which is supported by electronic structure calculations. The observed evolution in the FSRS spectrum is assigned to vibrational cooling accompanied by partitioning of the dark state between the product isomer and the original ground state. Formation of the product isomer is observed in real time by FSRS. It is formed vibrationally hot and cools over several picoseconds, completing the characterization of the light-driven half of the photocycle.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b03599

DOI: 10.1021/jacs.7b03599

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.