3 years ago

Bridging the Gap Between Neural Networks and Neuromorphic Hardware with A Neural Network Compiler.

Yuan Xie, Yu Ji, YouHui Zhang, WenGuang Chen

Different from developing neural networks (NNs) for general-purpose processors, the development for NN chips usually faces with some hardware-specific restrictions, such as limited precision of network signals and parameters, constrained computation scale, and limited types of non-linear functions.

This paper proposes a general methodology to address the challenges. We decouple the NN applications from the target hardware by introducing a compiler that can transform an existing trained, unrestricted NN into an equivalent network that meets the given hardware's constraints. We propose multiple techniques to make the transformation adaptable to different kinds of NN chips, and reliable for restrict hardware constraints.

We have built such a software tool that supports both spiking neural networks (SNNs) and traditional artificial neural networks (ANNs). We have demonstrated its effectiveness with a fabricated neuromorphic chip and a processing-in-memory (PIM) design. Tests show that the inference error caused by this solution is insignificant and the transformation time is much shorter than the retraining time. Also, we have studied the parameter-sensitivity evaluations to explore the tradeoffs between network error and resource utilization for different transformation strategies, which could provide insights for co-design optimization of neuromorphic hardware and software.

Publisher URL: http://arxiv.org/abs/1801.00746

DOI: arXiv:1801.00746v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.