5 years ago

Fine-Tuned Photoactive and Interconnection Layers for Achieving over 13% Efficiency in a Fullerene-Free Tandem Organic Solar Cell

Fine-Tuned Photoactive and Interconnection Layers for Achieving over 13% Efficiency in a Fullerene-Free Tandem Organic Solar Cell
Bowei Gao, Chang He, Huifeng Yao, Bei Yang, Yunpeng Qin, Yong Cui, Jianhui Hou, Shaoqing Zhang, Bowei Xu
Fabricating organic solar cells (OSCs) with a tandem structure has been considered an effective method to overcome the limited light absorption spectra of organic photovoltaic materials. Currently, the most efficient tandem OSCs are fabricated by adopting fullerene derivatives as acceptors. In this work, we designed a new non-fullerene acceptor with an optical band gap (Egopt) of 1.68 eV for the front subcells and optimized the phase-separation morphology of a fullerene-free active layer with an Egopt of 1.36 eV to fabricate the rear subcell. The two subcells show a low energy loss and high external quantum efficiency, and their photoresponse spectra are complementary. In addition, an interconnection layer (ICL) composed of ZnO and a pH-neutral self-doped conductive polymer, PCP-Na, with high light transmittance in the near-IR range was developed. From the highly optimized subcells and ICL, solution-processed fullerene-free tandem OSCs with an average power conversion efficiency (PCE) greater than 13% were obtained.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b01493

DOI: 10.1021/jacs.7b01493

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.