3 years ago

Building Blocks of Topological Quantum Chemistry: Elementary Band Representations.

C. Felser, M. I. Aroyo, L. Elcoro, Zhijun Wang, Barry Bradlyn, Jennifer Cano, M. G. Vergniory, B. Andrei Bernevig

The link between chemical orbitals described by local degrees of freedom and band theory, which is defined in momentum space, was proposed by Zak several decades ago for spinless systems with and without time-reversal in his theory of "elementary" band representations. In Nature 547, 298-305 (2017), we introduced the generalization of this theory to the experimentally relevant situation of spin-orbit coupled systems with time-reversal symmetry and proved that all bands that do not transform as band representations are topological. Here, we give the full details of this construction. We prove that elementary band representations are either connected as bands in the Brillouin zone and are described by localized Wannier orbitals respecting the symmetries of the lattice (including time-reversal when applicable), or, if disconnected, describe topological insulators. We then show how to generate a band representation from a particular Wyckoff position and determine which Wyckoff positions generate elementary band representations for all space groups. This theory applies to spinful and spinless systems, in all dimensions, with and without time reversal. We introduce a homotopic notion of equivalence and show that it results in a finer classification of topological phases than approaches based only on the symmetry of wavefunctions at special points in the Brillouin zone. Utilizing a mapping of the band connectivity into a graph theory problem, which we introduced in Nature 547, 298-305 (2017), we show in companion papers which Wyckoff positions can generate disconnected elementary band representations, furnishing a natural avenue for a systematic materials search.

Publisher URL: http://arxiv.org/abs/1709.01935

DOI: arXiv:1709.01935v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.