3 years ago

Oncofetal HMGA2 effectively curbs unconstrained (+) and (−) DNA supercoiling

Jie Yan, Sabrina Peter, Peter Dröge, Xiaodan Zhao
HMGA2 belongs to the family of the high mobility group (HMG) proteins. It binds DNA via three AT-hook domains to the minor groove of adenine-thymine (AT) rich DNA. Recently, a new function of HMGA2 as a replication fork chaperone that protects stem and cancer cells from replication fork collapse induced by chemotherapeutic agents was uncovered, suggesting a previously uncharacterized binding at replication forks. In this study, we examined HMGA2 binding to four DNA structures relevant to replication forks, namely ds DNA, ss DNA, forked DNA and supercoiled DNA plectonemes. We detected HMGA2 binding to supercoiled DNA at the lowest concentration and this binding mode transiently stabilizes the supercoiled plectonemes against relaxation by type I topoisomerase. Together, these findings suggest a plausible mechanism how fork regression and collapse are attenuated by HMGA2 during replication stress, i.e. through transient stabilization of positively supercoiled plectonemes in the parental duplex.

Publisher URL: https://www.nature.com/articles/s41598-017-09104-5

DOI: 10.1038/s41598-017-09104-5

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.