# Right sign of spin rotation operator.

For the fermion transformation in the space all books of quantum mechanics propose to use the unitary operator $\widehat{U}_{\vec n}(\varphi)=\exp{(-i\frac\varphi2(\widehat\sigma\cdot\vec n))}$, where $\varphi$ is angle of rotation around the axis $\vec{n}$. But this operator turns the spin in inverse direction presenting the rotation to the left. The error of defining of $\widehat{U}_{\vec n}(\varphi)$ action is caused because the spin supposed as simple vector which is independent from $\widehat\sigma$-operator a priori. In this work it is shown that each fermion marked by number $i$ has own Pauli-vector $\widehat\sigma_i$ and both of them change together. If we suppose the global $\widehat\sigma$-operator and using the Bloch Sphere approach define for all fermions the common quantization axis $z$ the spin transformation will be the same: the right hand rotation around the axis $\vec{n}$ is performed by the operator $\widehat{U}^+_{\vec n}(\varphi)=\exp{(+i\frac\varphi2(\widehat\sigma\cdot\vec n))}$.

Publisher URL: http://arxiv.org/abs/1801.06129

DOI: arXiv:1801.06129v1

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.