3 years ago

Probing Planckian corrections at the horizon scale with LISA binaries.

Paolo Pani, Valeria Ferrari, Andrea Maselli, Tiziano Abdelsalhin, Leonardo Gualtieri, Vitor Cardoso

Several quantum-gravity models of compact objects predict microscopic or even Planckian corrections at the horizon scale. We explore the possibility of measuring two model-independent, smoking-gun effects of these corrections in the gravitational waveform of a compact binary, namely the absence of tidal heating and the presence of tidal deformability. For events detectable by the future space-based interferometer LISA, we show that the effect of tidal heating dominates and allows one to constrain putative corrections down to the Planck scale. The measurement of the tidal Love numbers with LISA is more challenging but, in optimistic scenarios, it allows to constrain the compactness of a supermassive exotic compact object down to the Planck scale. Our analysis suggests that highly-spinning, supermassive binaries at 1-20 Gpc provide unparalleled tests of quantum-gravity effects at the horizon scale.

Publisher URL: http://arxiv.org/abs/1703.10612

DOI: arXiv:1703.10612v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.