3 years ago

Thermodynamic Justification for the Parabolic Model for Reactivity Indicators with Respect to Electron Number and a Rigorous Definition for the Electrophilicity: The Essential Role Played by the Electronic Entropy

Thermodynamic Justification for the Parabolic Model
for Reactivity Indicators with Respect to Electron Number and a Rigorous
Definition for the Electrophilicity: The Essential Role Played by
the Electronic Entropy
Paul W. Ayers, Alberto Vela, Marco Franco-Pérez, José L. Gázquez
The temperature-dependence of the Helmholtz free energy with respect to the number of electrons is analyzed within the framework of the Grand Canonical Ensemble. At the zero-temperature limit, the Helmholtz free energy behaves as a Heaviside function of the number of electrons; however, as the temperature increases, the profile smoothens and exhibits a minimum value at noninteger positive values of the fractional electronic charge. We show that the exact average electronic energy as a function of the number of electrons does not display this feature at any temperature, since this behavior is solely due to the electronic entropy. Our mathematical analysis thus indicates that the widely used parabolic interpolation model should not be viewed as an approximation for the average electronic energy, but for the dependence of the Helmholtz free energy upon the number of electrons, and this analysis is corroborated by numerical results. Finally, an electrophilicity index is defined for the Helmholtz free energy showing that, for a given chemical species, there exists a temperature value for which this quantity is equivalent to the electrophilicity index defined within the parabolic interpolation of the electronic energy as a function of the number of electrons. Our formulation suggests that the convexity property of the energy versus the number of electrons together with the entropic contribution does not allow for an analogous nucleophilicity index to be defined.

Publisher URL: http://dx.doi.org/10.1021/acs.jctc.7b00940

DOI: 10.1021/acs.jctc.7b00940

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.