3 years ago

Impact of Normalization and Input on ARMAX-ANN Model Performance in Suspended Sediment Load Prediction

Hamid Moeeni, Hossein Bonakdari

Abstract

The suspended sediment load in rivers is an important parameter in watershed planning and management. Since daily suspended sediment time series contain linear and nonlinear components, existing prediction models are associated with limitations. Therefore, this study introduces a new hybrid model comprising two commonly used stochastic and nonlinear models. The sediment load is first modeled by an autoregressive-moving average with exogenous terms (ARMAX) model. Subsequently, the ARMAX residuals are modeled with an artificial neural network (ANN). For this purpose, discharge (Q) and sediment (S) are considered as model input parameters. Three modeling scenarios are defined to investigate the impact of data normalization on the hybrid model. The exponential and Box-Cox transformation methods are combined into a new data normalization method called mixed transformation. The performance of these methods is then compared. In addition, the impact of the type and number of input combinations on ARMAX-ANN model accuracy is evaluated. To this end, 12 input combinations and 1331 ARMAX and ANN models are verified. The ARMAX model inputs include S, Q and the white noise disturbance term (e), while the ANN model inputs include the ARMAX model results and residuals. Moreover, the hybrid model’s accuracy is compared with the ARMAX and ANN models.

Publisher URL: https://link.springer.com/article/10.1007/s11269-017-1842-z

DOI: 10.1007/s11269-017-1842-z

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.