3 years ago

A novel stromal lncRNA signature reprograms fibroblasts to promote the growth of oral squamous cell carcinoma via LncRNA-CAF/interleukin-33.

Xiaofeng Huang, Liang Ding, Qingang Hu, Jing Ren, Yayi Hou, Yanhong Ni, Hui Wang, Yuxian Song, Yi Li, Dongya Zhang
Stromal carcinoma-related fibroblasts (CAFs) are the main type of non-immune cells in the tumor microenvironment (TME). CAFs interact with cancer cells to promote tumor proliferation. Long non-coding RNAs (lncRNAs) are known to regulate cell growth, apoptosis, and metastasis of cancer cells, but their role in stromal cells is unclear. Using RNA sequencing, we identified a stromal lncRNA signature during the transformation of CAFs from normal fibroblasts (NFs) in oral squamous cell carcinoma (OSCC). We uncovered an uncharacterized lncRNA, FLJ22447, which was remarkably up-regulated in CAFs, referred to LncRNA-CAF (Lnc-CAF) hereafter. Interleukin-33 (IL-33) was mainly located in the stroma and positively co-expressed with Lnc-CAF to elevate the expression of CAF markers (α-SMA, vimentin, and N-cadherin) in fibroblasts. In a co-culture system, IL-33 knockdown impaired Lnc-CAF-mediated stromal fibroblast activation, leading to decreased proliferation of tumor cells. Mechanistically, Lnc-CAF up-regulated IL-33 levels and prevented p62-dependent autophagy-lysosome degradation of IL-33, which was independent of LncRNA-protein scaffold effects. Treatment with the autophagy inducer, rapamycin, impaired the proliferative effect of Lnc-CAF/IL-33 by promoting IL-33 degradation. In turn, tumor cells further increased Lnc-CAF levels in stromal fibroblasts via exosomal Lnc-CAF. In patients with OSCC, high Lnc-CAF/IL-33 expression correlated with high TNM stage (n = 140). Moreover, high Lnc-CAF expression predicted poor prognosis. In vivo, Lnc-CAF knockdown restricted tumor growth and was associated with decreased Ki-67 expression and α-SMA+ CAF in the stroma. In conclusion, we identified a stromal lncRNA signature, which reprograms NFs to CAFs via Lnc-CAF/IL-33 and promotes OSCC development.

Publisher URL: http://doi.org/10.1093/carcin/bgy006

DOI: 10.1093/carcin/bgy006

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.