3 years ago

Low-Threshold Light Amplification in Bifluorene Single Crystals: Role of the Trap States

Low-Threshold
Light Amplification in Bifluorene Single Crystals: Role of the Trap
States
Saulius Juršėnas, Paulius Baronas, Ona Adomėnienė, Jean-Charles Ribierre, Karolis Kazlauskas, Chihaya Adachi, Gediminas Kreiza, Povilas Adomėnas
Organic single crystals (SCs) expressing long-range periodicity and dense molecular packing are an attractive amplifying medium for the realization of electrically driven organic lasers. However, the amplified spontaneous emission (ASE) threshold (1–10 kW/cm2) of SCs is still significantly higher compared to those of amorphous neat or doped films. The current study addresses this issue by investigating ASE properties of rigid bridging group-containing bifluorene SCs. Introduction of the rigid bridges in bifluorenes enables considerable reduction of nonradiative decay, which, along with enhanced fluorescence quantum yield (72–82%) and short excited state lifetime (1.5–2.5 ns), results in high radiative decay rates (∼0.5 × 109 s–1) of the SCs, making them highly attractive for lasing applications. The revealed ASE threshold of 400 W/cm2 in acetylene-bridged bifluorene SCs is found to be among the lowest ever reported for organic crystals. Ultrafast transient absorption spectroscopy enabled one to disclose pronounced differences in the excited state dynamics of the studied SCs, pointing out the essential role of radiative traps in achieving a record low ASE threshold. Although the origin of the trap states was not completely unveiled, the obtained results clearly evidence that the crystal doping approach can be successful in achieving extremely low ASE thresholds required for electrically pumped organic laser.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b14702

DOI: 10.1021/acsami.7b14702

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.