3 years ago

van der Waals Bonded Co/h-BN Contacts to Ultrathin Black Phosphorus Devices

van der Waals Bonded Co/h-BN Contacts to Ultrathin Black Phosphorus Devices
Ahmet Avsar, Su Ying Quek, Khoong Hong Khoo, Jun Y. Tan, Yuting Yeo, Barbaros Özyilmaz, Takashi Taniguchi, Kenji Watanabe, Xin Luo
Because of the chemical inertness of two dimensional (2D) hexagonal-boron nitride (h-BN), few atomic-layer h-BN is often used to encapsulate air-sensitive 2D crystals such as black phosphorus (BP). However, the effects of h-BN on Schottky barrier height, doping, and contact resistance are not well-known. Here, we investigate these effects by fabricating h-BN encapsulated BP transistors with cobalt (Co) contacts. In sharp contrast to directly Co contacted p-type BP devices, we observe strong n-type conduction upon insertion of the h-BN at the Co/BP interface. First-principles calculations show that this difference arises from the much larger interface dipole at the Co/h-BN interface compared to the Co/BP interface, which reduces the work function of the Co/h-BN contact. The Co/h-BN contacts exhibit low contact resistances (∼4.5 kΩ) and are Schottky barrier-free. This allows us to probe high electron mobilities (4,200 cm2/(V s)) and observe insulator–metal transitions even under two-terminal measurement geometry.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b01817

DOI: 10.1021/acs.nanolett.7b01817

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.