3 years ago

Effect of myelin water exchange on DTI-derived parameters in diffusion MRI: Elucidation of TE dependence

Qiqi Tong, Jianhui Zhong, Hongjian He, Xu Yan, Qiuping Ding, Mu Lin, Thorsten Feiweier
Purpose Water exchange exists between different neuronal compartments of brain tissue but is often ignored in most diffusion models. The goal of the current study was to demonstrate the dependence of diffusion measurements on echo time (TE) in the human brain and to investigate the underlying effects of myelin water exchange. Methods Five healthy subjects were examined with single-shot pulsed-gradient spin-echo echo-planar imaging with fixed duration (δ) and separation (Δ) of diffusion gradient pulses and a set of varying TEs. The effects of water exchange and intrinsic T2 difference in cellular environments were investigated with Monte Carlo simulations. Results Both in vivo measurements and simulations showed that fractional anisotropy (FA) and axial diffusivity (AD) had positive correlations with TE, while radial diffusivity (RD) showed a negative correlation, which is consistent with a previous study. The simulation results further indicated the sensitivity of TE dependence to the change of g-ratio. Conclusion The exchange between myelin and intra/extra-axonal water pools often plays a non-negligible role in the observed TE dependence of diffusion parameters, which may accompany or alter the effect of intrinsic T2 in causing such dependence. The TE dependence may potentially serve as a biomarker for demyelination processes (e.g., in multiple sclerosis and Alzheimer's disease). Magn Reson Med 79:1650–1660, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/mrm.26812

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.