3 years ago

Border irrigation performance with distance-based cut-off

Border irrigation is widely practised for winter wheat production on the North China Plain. Winter wheat is mainly irrigated with groundwater as a supplement to insufficient precipitation to maintain high agricultural production. As a result of the increased demands for water, groundwater levels have declined. Therefore, improvements to border irrigation performance and water use efficiency are urgently needed. The objective of this study was to determine the optimal distance at which to cut off inflow under different inflow rate conditions in closed-ended border systems. The experimental treatments included three inflow rates (high, moderate, and low, with average rates of 6.91 l s−1 m−1, 4.95 l s−1 m−1, and 2.81 l s−1 m−1, respectively) and three cut-off ratios (CRs) arranged in three replications at the CAS Ecological Agricultural Experiment Station in Nanpi, Hebei Province, China. The surface irrigation hydraulic simulation model WinSRFR was used to examine the sensitivity of the existing design to a range of bottom slopes, surface roughness values, and inflow rates to demonstrate the robustness of the solutions in terms of their application efficiency and low-quarter distribution uniformity. The results present the optimum CR values for different inflow rate conditions to maximize irrigation performance. The results indicate that irrigation performance above the optimum CR values for high, moderate, and low inflow rates is not very sensitive to bottom slope, and no substantial changes in performance were noted when Manning’s roughness coefficient was between 0.04 and 0.09. A set of inflow rate ranges that corresponds to the recommended CRs that could achieve high irrigation performance is presented.

Publisher URL: www.sciencedirect.com/science

DOI: S037837741830060X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.