3 years ago

Evolutionary steps involving counterion displacement in a tunicate opsin [Biochemistry]

Evolutionary steps involving counterion displacement in a tunicate opsin [Biochemistry]
Yoshinori Shichida, Takahiro Yamashita, Yasushi Imamoto, Takehiro G. Kusakabe, Motoyuki Tsuda, Keiichi Kojima

Ci-opsin1 is a visible light-sensitive opsin present in the larval ocellus of an ascidian, Ciona intestinalis. This invertebrate opsin belongs to the vertebrate visual and nonvisual opsin groups in the opsin phylogenetic tree. Ci-opsin1 contains candidate counterions (glutamic acid residues) at positions 113 and 181; the former is a newly acquired position in the vertebrate visual opsin lineage, whereas the latter is an ancestral position widely conserved among invertebrate opsins. Here, we show that Glu113 and Glu181 in Ci-opsin1 act synergistically as counterions, which imparts molecular properties to Ci-opsin1 intermediate between those of vertebrate- and invertebrate-type opsins. Synergy between the counterions in Ci-opsin1 was demonstrated by E113Q and E181Q mutants that exhibit a pH-dependent spectral shift, whereas only the E113Q mutation in vertebrate rhodopsin yields this spectral shift. On absorbing light, Ci-opsin1 forms an equilibrium between two intermediates with protonated and deprotonated Schiff bases, namely the MI-like and MII-like intermediates, respectively. Adding G protein caused the equilibrium to shift toward the MI-like intermediate, indicating that Ci-opsin1 has a protonated Schiff base in its active state, like invertebrate-type opsins. Ci-opsin1’s G protein activation efficiency is between the efficiencies of vertebrate- and invertebrate-type opsins. Interestingly, the E113Y and E181S mutations change the molecular properties of Ci-opsin1 into those resembling invertebrate-type or bistable opsins and vertebrate ancient/vertebrate ancient-long or monostable opsins, respectively. These results strongly suggest that acquisition of counterion Glu113 changed the molecular properties of visual opsin in a vertebrate/tunicate common ancestor as a crucial step in the evolution of vertebrate visual opsins.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.