5 years ago

Effects of Tri-n-octylamine with or without Diluents on Microporous Ethylene Chlorotrifluoroethylene Membranes

Effects of Tri-n-octylamine with or without Diluents on Microporous Ethylene Chlorotrifluoroethylene Membranes
Derek J. Dehn, Kamalesh K. Sirkar, Na Yao, Boris Khusid
Microporous ethylene chlorotrifluoroethylene (ECTFE) membranes are expected to become industrially useful. Its solvent resistance is important in applications involving solvent microfiltration, organic synthesis, and membrane solvent extraction (MSX). Recent characterizations of microporous ECTFE membrane after exposure to different liquid media and radiation, indicated that pure tri-n-octylamine (TOA) does have some effect. However, it is used in MSX with diluents, e.g., xylene. Therefore, many material and porous-structure characterization techniques and dead-end microfiltration were employed to study solvent-treatment effects on ECTFE membranes exposed to ethanol, xylene, xylene80/TOA20, and pure TOA. Membrane-surface roughness of virgin, ethanol-soaked, and TOA-soaked membranes indicated TOA-soaked membranes were the roughest, followed by ethanol-soaked and virgin ones. Bubble-point-pressure based maximum pore diameters (dmax) of solvent-treated membranes were: dmax,TOA > dmax,Xylene/TOA > dmax,Xylene > dmax,Ethanol > dmax,Virgin. In dead-end microfiltration, fouling mechanisms behaved differently for virgin and TOA-soaked membranes; filtrate particle size distributions agreed well with estimated pore sizes. Additional characterizations indicated the limited effect of ethanol and xylene; however, TOA-soaked membrane behaved differently. In FTIR and Raman spectra, TOA introduced extra peaks indicating contributions from C–H stretching and deformation. Raman spectra of xylene80/TOA20-soaked membrane were a combination of those of xylene and TOA.

Publisher URL: http://dx.doi.org/10.1021/acs.iecr.7b01839

DOI: 10.1021/acs.iecr.7b01839

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.