4 years ago

Molecular Dynamics Simulations on Gas-Phase Proteins with Mobile Protons: Inclusion of All-Atom Charge Solvation

Molecular Dynamics Simulations on Gas-Phase Proteins with Mobile Protons: Inclusion of All-Atom Charge Solvation
Lars Konermann
Molecular dynamics (MD) simulations have become a key tool for examining the properties of electrosprayed protein ions. Traditional force fields employ static charges on titratable sites, whereas in reality, protons are highly mobile in gas-phase proteins. Earlier studies tackled this problem by adjusting charge patterns during MD runs. Within those algorithms, proton redistribution was subject to energy minimization, taking into account electrostatic and proton affinity contributions. However, those earlier approaches described (de)protonated moieties as point charges, neglecting charge solvation, which is highly prevalent in the gas phase. Here, we describe a mobile proton algorithm that considers the electrostatic contributions from all atoms, such that charge solvation is explicitly included. MD runs were broken down into 50 ps fixed-charge segments. After each segment, the electrostatics was reanalyzed and protons were redistributed. Challenges associated with computational cost were overcome by devising a streamlined method for electrostatic calculations. Avidin (a 504-residue protein complex) maintained a nativelike fold over 200 ns. Proton transfer and side chain rearrangements produced extensive salt bridge networks at the protein surface. The mobile proton technique introduced here should pave the way toward future studies on protein folding, unfolding, collapse, and subunit dissociation in the gas phase.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b05703

DOI: 10.1021/acs.jpcb.7b05703

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.