3 years ago

Photocatalytic hydrogen production using TiO2 coated iron-oxide core shell particles

Photocatalytic hydrogen production using TiO2 coated iron-oxide core shell particles
Photocatalytic water splitting plays a challenging role as it is one of the most important reactions for solving energy, environmental problems and sustainability. Photocatalytic water splitting was improved by using a novel kind of magnetically separable core shell nano photocatalyst TiO2/Fe2O3, prepared by co-precipitation method. It was characterised for particle size (XRD), band gap (UV-DRS), morphology (SEM), particle size (HRTEM), elemental composition (EDS) and electrochemical studies. Photocatalytic splitting of water was examined in tubular reactor of 500 mL capacity with various sacrificial agents viz., methanol, ethanol, acetic acid, lactic acid, EDTA and triethanolamine. To enhance the hydrogen production, various operating parameters viz., effect of sacrificial agents, catalytic dosage, light irradiation and recycle flow rate were optimized. With the optimized operating parameters (0.2 g catalyst dosage, 60 mL/min recycle flow rate, 96 W/m2 light irradiation and EDTA as sacrificial agent) the maximum hydrogen achieved was 2700 μmol/h for the quantum yield of 3.86% at 550 nm. The reusability studies were conducted and the TiO2 coated Fe2O3 core shell particles were found to be stable than the plain TiO2 nano particles. Effective charge transfer from TiO2 to Fe2O3 and the suppression of e/h+ pair recombination attributed significant enhancement in photoactivity, thereby increasing the hydrogen production.

Publisher URL: www.sciencedirect.com/science

DOI: S0360319917348449

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.