4 years ago

Dependence of Binding Free Energies between RNA Nucleobases and Protein Side Chains on Local Dielectric Properties

Dependence of Binding Free Energies between RNA Nucleobases and Protein Side Chains on Local Dielectric Properties
Anton A. Polyansky, Anita de Ruiter, Bojan Zagrovic
In order to fully understand the microscopic origins of binding specificity between nucleic acids and proteins, it is imperative to study the dependence of the binding preferences between nucleobases and protein side chains on the properties of the environment. Here, we employ molecular dynamics simulations and umbrella sampling to derive the potentials of mean force and the associated absolute binding free energies between the four standard RNA nucleobases and the side chains of aspartic acid and tryptophan in water/methanol mixtures exhibiting a wide range of dielectric constants. In addition to their opposing character when it comes to hydrophobicity, aspartate and tryptophan side chains were chosen because they exhibit the greatest change in binding free energies with nucleobases between pure water and methanol environments. We exploit a strong linear dependence of the derived ΔG values on the mole fraction of methanol to estimate the binding free energies of all possible combinations of different standard RNA nucleobases and side chains at multiple values of dielectric constants. Finally, we critically assess the recently proposed complementarity hypothesis concerning direct, coaligned binding between mRNAs and their cognate proteins in light of the present results.

Publisher URL: http://dx.doi.org/10.1021/acs.jctc.6b01202

DOI: 10.1021/acs.jctc.6b01202

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.