4 years ago

Time-Dependent Double-Hybrid Density Functionals with Spin-Component and Spin-Opposite Scaling

Time-Dependent Double-Hybrid Density Functionals with Spin-Component and Spin-Opposite Scaling
Tobias Schwabe, Lars Goerigk
For the first time, we combine time-dependent double-hybrid density functional approximations (TD-DHDFAs) for the calculation of electronic excitation energies with the concepts of spin-component and spin-opposite scaling (SCS/SOS) of electron-pair contributions to their nonlocal correlation components. Different flavors of this idea, ranging from standard SCS parameters to fully fitted parameter sets, are presented and tested on six different parent DHDFAs. For cross-validation, we assess those methods on three benchmark sets that cover small- to medium-sized chromophores (up to 78 atoms) and different excitation types. For this purpose, we also introduce new CC3 reference values for the popular Gordon benchmark set that we recommend using in future studies. Our results confirm that already the (unscaled) parent TD-DHDFAs are accurate and outperform some wave function methods. Further introduction of SCS/SOS eliminates extreme outliers, reduces deviation spans from reference values by up to 0.5 eV, aligns the performance of the Tamm-Dancoff approximation (TDA) to that of full TD calculations, and also enables a more balanced description of different excitation types. The best-performing TD-based methods in our cross validation have mean absolute deviations as low as 0.14 eV compared to the time- and resource-intensive CC3 approach. A very important finding is that we also obtained SOS variants with excellent performance, contrary to wave function based methods. This opens a future pathway to highly efficient methods for the optimization of excited-state geometries, particularly when paired with computing strategies such as the Laplace transform. We recommend our SCS- and SOS-based variants for further testing and subsequent applications.

Publisher URL: http://dx.doi.org/10.1021/acs.jctc.7b00386

DOI: 10.1021/acs.jctc.7b00386

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.