3 years ago

MicroRNA-146b promotes PI3K/AKT pathway hyperactivation and thyroid cancer progression by targeting PTEN

MicroRNA-146b promotes PI3K/AKT pathway hyperactivation and thyroid cancer progression by targeting PTEN
Julia Ramírez-Moya, Pilar Santisteban, León Wert-Lamas
Recent studies have shown that miR-146b is the most upregulated microRNA in thyroid cancer and has a central role in cancer progression through mechanisms that remain largely unidentified. As phosphoinositide 3-kinase/protein kinase-B (PI3K/AKT) signaling is a fundamental oncogenic driver in many thyroid cancers, we explored a potential role for miR-146b and its target genes in PI3K/AKT activation. Among the predicted target genes of miR-146b, we found the tumor-suppressor phosphatase and tensin homolog (PTEN). Constitutive overexpression of miR-146b in thyroid epithelial cell lines significantly decreased PTEN mRNA and protein levels by direct binding to its 3′-UTR. This was accompanied by PI3K/AKT hyperactivation, leading to the exclusion of FOXO1 and p27 from the nucleus and a corresponding increase in cellular proliferation. Moreover, miR-146b overexpression led to protection from apoptosis and an increased migration and invasion potential, regulating genes involved in epithelial–mesenchymal transition. Notably, with the single exception of E-cadherin expression, all of these outcomes could be reversed by PTEN coexpression. Further analysis showed that miR-146b directly inhibits E-cadherin expression through binding to its 3′-UTR. Interestingly, miR-146b inhibition in human thyroid tumor xenografts, using a synthetic and clinically amenable molecule, blocked tumor growth when delivered intratumorally. Importantly, this inhibition increased PTEN protein levels. In conclusion, our data define a novel mechanism of PI3K/AKT hyperactivation and outline a regulatory role for miR-146b in suppressing PTEN expression, a frequent observation in thyroid cancer. Both events are related to a more aggressive tumoral phenotype. Targeting miR-146b therefore represents a promising therapeutic strategy for the treatment of this disease.

Publisher URL: https://www.nature.com/articles/s41388-017-0088-9

DOI: 10.1038/s41388-017-0088-9

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.