3 years ago

Size vs. Structure in Training Corpora for Word Embedding Models: Araneum Russicum Maximum and Russian National Corpus.

Maria Kunilovskaya, Andrey Kutuzov

In this paper, we present a distributional word embedding model trained on one of the largest available Russian corpora: Araneum Russicum Maximum (over 10 billion words crawled from the web). We compare this model to the model trained on the Russian National Corpus (RNC). The two corpora are much different in their size and compilation procedures. We test these differences by evaluating the trained models against the Russian part of the Multilingual SimLex999 semantic similarity dataset. We detect and describe numerous issues in this dataset and publish a new corrected version. Aside from the already known fact that the RNC is generally a better training corpus than web corpora, we enumerate and explain fine differences in how the models process semantic similarity task, what parts of the evaluation set are difficult for particular models and why. Additionally, the learning curves for both models are described, showing that the RNC is generally more robust as training material for this task.

Publisher URL: http://arxiv.org/abs/1801.06407

DOI: arXiv:1801.06407v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.