3 years ago

Online Bipartite Matching with Amortized $O(\log^2 n)$ Replacements.

Aaron Bernstein, Eva Rotenberg, Jacob Holm

In the online bipartite matching problem with replacements, all the vertices on one side of the bipartition are given, and the vertices on the other side arrive one by one with all their incident edges. The goal is to maintain a maximum matching while minimizing the number of changes (replacements) to the matching. We show that the greedy algorithm that always takes the shortest augmenting path from the newly inserted vertex (denoted the SAP protocol) uses at most amortized $O(\log^2 n)$ replacements per insertion, where $n$ is the total number of vertices inserted. This is the first analysis to achieve a polylogarithmic number of replacements for \emph{any} replacement strategy, almost matching the $\Omega(\log n)$ lower bound. The previous best strategy known achieved amortized $O(\sqrt{n})$ replacements [Bosek, Leniowski, Sankowski, Zych, FOCS 2014]. For the SAP protocol in particular, nothing better than then trivial $O(n)$ bound was known except in special cases.

Our analysis immediately implies the same upper bound of $O(\log^2 n)$ reassignments for the capacitated assignment problem, where each vertex on the static side of the bipartition is initialized with the capacity to serve a number of vertices.

We also analyze the problem of minimizing the maximum server load. We show that if the final graph has maximum server load $L$, then the SAP protocol makes amortized $O( \min\{L \log^2 n , \sqrt{n}\log n\})$ reassignments. We also show that this is close to tight because $\Omega(\min\{L, \sqrt{n}\})$ reassignments can be necessary.

Publisher URL: http://arxiv.org/abs/1707.06063

DOI: arXiv:1707.06063v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.