3 years ago

The magnetar model for Type I superluminous supernovae I: Bayesian analysis of the full multicolour light curve sample with MOSFiT.

Matt Nicholl, James Guillochon, Edo Berger

We use the new Modular Open Source Fitter for Transients (MOSFiT) to model 38 hydrogen-poor superluminous supernovae (SLSNe). We fit their multicolour light curves with a magnetar spin-down model and present the posterior distributions of magnetar and ejecta parameters. The colour evolution can be well matched with a simple absorbed blackbody. We find the following medians (1$\sigma$ ranges): spin period 2.4 ms (1.2-4 ms); magnetic field $0.8\times 10^{14}$ G (0.2-1.8 $\times 10^{14}$ G); ejecta mass 4.8 Msun (2.2-12.9 Msun); kinetic energy $3.9\times 10^{51}$ erg (1.9-9.8 $\times 10^{51}$ erg). This significantly narrows the parameter space compared to our priors, showing that although the model is flexible, the parameter space relevant to SLSNe is well constrained by existing data. The requirement that the instantaneous engine power is $\sim 10^{44}$ erg at the light curve peak necessitates either a large rotational energy (P<2 ms), or more commonly that the spin-down and diffusion timescales be well-matched. We find no evidence for separate populations of fast- and slow-declining SLSNe, which instead form a continuum both in light curve widths and inferred parameters. Variations in the spectra are well explained through differences in spin-down power and photospheric radii at maximum-light. We find no correlations between any model parameters and the properties of SLSN host galaxies. Comparing our posteriors to stellar evolution models, we show that SLSNe require rapidly rotating (fastest 10%) massive stars (> 20 Msun), and that this is consistent with the observed SLSN rate. High mass, low metallicity, and likely binary interaction all serve to maintain rapid rotation essential for magnetar formation. By reproducing the full set of SLSN light curves, our posteriors can be used to inform photometric searches for SLSNe in future survey data.

Publisher URL: http://arxiv.org/abs/1706.00825

DOI: arXiv:1706.00825v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.