3 years ago

Multipolar Kondo Effect in $^1$S$_0$-$^3$P$_2$ Mixture of $^{173}$Yb Atoms.

Gyu Boong Jo, Yshai Avishai, Igor Kuzmenko, Tetyana Kuzmenko

Whereas in the familiar Kondo effect the exchange interaction is dipolar, it can also be multipolar, as has been realized in a recent experiment. Here we study multipolar Kondo effect in a Fermi gas of cold $^{173}$Yb atoms. Making use of different AC polarizability of the electronic ground state Yb($^{1}$S$_{0}$) and the long-lived metastable state Yb$^{*}$($^{3}$P$_{2}$), it is suggested that the latter atoms can be localized and serve as a dilute concentration of magnetic impurities while the former ones remain itinerant. The exchange mechanism between the itinerant Yb and the localized Yb$^{*}$ atoms is analyzed and shown to be antiferromagnetic. The quadruple and octuple interactions act to enhance the Kondo temperature $T_K$ that is found to be experimentally accessible. The bare exchange Hamiltonian needs to be decomposed into dipole ($d$), quadruple ($q$) and octuple ($o$) interactions in order to retain its form under renormalization group (RG) analysis, in which the corresponding exchange constants ($\lambda_{\mathrm{d}}$, $\lambda_{\mathrm{q}}$ and $\lambda_{\mathrm{o}}$) flow independently. Numerical solution of the RG scaling equations reveals a few finite fixed points, indicating an over-screening, which suggests a non-Fermi liquid phase. The impurity contribution to the magnetic susceptibility is calculated in the weak coupling regime (${T}\gg{T}_{K}$).

Publisher URL: http://arxiv.org/abs/1611.08673

DOI: arXiv:1611.08673v6

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.