3 years ago

From Nonluminescent Cs4PbX6 (X = Cl, Br, I) Nanocrystals to Highly Luminescent CsPbX3 Nanocrystals: Water-Triggered Transformation through a CsX-Stripping Mechanism

From Nonluminescent Cs4PbX6 (X = Cl, Br, I) Nanocrystals to Highly Luminescent CsPbX3 Nanocrystals: Water-Triggered Transformation through a CsX-Stripping Mechanism
Qipeng Liu, Shu Jiang, Qiao Zhang, Di Yang, Linzhong Wu, Yadong Yin, Baoquan Sun, Yong Xu, Qixuan Zhong, Yun Zhao, Min Chen, Huicheng Hu
We report a novel CsX-stripping mechanism that enables the efficient chemical transformation of nonluminescent Cs4PbX6 (X = Cl, Br, I) nanocrystals (NCs) to highly luminescent CsPbX3 NCs. During the transformation, Cs4PbX6 NCs dispersed in a nonpolar solvent are converted into CsPbX3 NCs by stripping CsX through an interfacial reaction with water in a different phase. This process takes advantage of the high solubility of CsX in water as well as the ionic nature and high ion diffusion property of Cs4PbX6 NCs, and produces monodisperse and air-stable CsPbX3 NCs with controllable halide composition, tunable emission wavelength covering the full visible range, narrow emission width, and high photoluminescent quantum yield (up to 75%). An additional advantage is that this is a clean synthesis as Cs4PbX6 NCs are converted into CsPbX3 NCs in the nonpolar phase while the byproduct of CsX is formed in water that could be easily separated from the organic phase. The as-prepared CsPbX3 NCs show enhanced stability against moisture because of the passivated surface. Our finding not only provides a new pathway for the preparation of highly luminescent CsPbX3 NCs but also adds insights into the chemical transformation behavior and stabilization mechanism of these emerging perovskite nanocrystals.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b02896

DOI: 10.1021/acs.nanolett.7b02896

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.